ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Zvi Shkedi, Robert C. McDonald, John J. Breen, Stephen J. Maguire, Joe Veranth
Fusion Science and Technology | Volume 28 | Number 4 | November 1995 | Pages 1720-1731
Technical Paper | Electrolytic Device | doi.org/10.13182/FST95-A30436
Articles are hosted by Taylor and Francis Online.
Apparent excess heat is observed in light water electrolytic cells containing a variety of nickel cathodes, a platinum anode, and an electrolyte of K2CO3 in H2O. High-accuracy calorimetric measurements show apparent excess heat in the range of 15 to 37% of input power if a 100% Faraday efficiency is assumed for H2 and O2 gas release. The H2 and O2 gases released during electrolysis are recombined in a vessel external to the cell, and the quantity of recombined H2O is compared with the quantity of H2O expected from 100% efficient electrolysis. The measured Faraday efficiency is shown to be significantly <100%, and conventional chemistry can account for the entire amount of observed apparent excess heat to within an accuracy of better than 0.5%.