ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Zvi Shkedi, Robert C. McDonald, John J. Breen, Stephen J. Maguire, Joe Veranth
Fusion Science and Technology | Volume 28 | Number 4 | November 1995 | Pages 1720-1731
Technical Paper | Electrolytic Device | doi.org/10.13182/FST95-A30436
Articles are hosted by Taylor and Francis Online.
Apparent excess heat is observed in light water electrolytic cells containing a variety of nickel cathodes, a platinum anode, and an electrolyte of K2CO3 in H2O. High-accuracy calorimetric measurements show apparent excess heat in the range of 15 to 37% of input power if a 100% Faraday efficiency is assumed for H2 and O2 gas release. The H2 and O2 gases released during electrolysis are recombined in a vessel external to the cell, and the quantity of recombined H2O is compared with the quantity of H2O expected from 100% efficient electrolysis. The measured Faraday efficiency is shown to be significantly <100%, and conventional chemistry can account for the entire amount of observed apparent excess heat to within an accuracy of better than 0.5%.