ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
M. J. Gouge, W. A. Houlberg, S. E. Attenberger, S. L. Milora, R. A. Causey, J. L. Anderson, D. Petti, O. Kveton, D. F. Holland
Fusion Science and Technology | Volume 28 | Number 4 | November 1995 | Pages 1644-1650
Technical Paper | Plasma Engineering | doi.org/10.13182/FST95-A30431
Articles are hosted by Taylor and Francis Online.
Isotopic tailoring of the deuterium and tritium density profiles infusion reactors can lead to reduced tritium inventory in plasma facing components and, therefore, improved safety considerations. The isotopic tailoring concept consists of utilizing a tritium-rich pellet source for core fueling and a deuterium-rich gas source for edge fueling. Because of the improved particle confinement associated with the deeper tritium core fueling component, comparable core densities of deuterium and tritium can be maintained even when the edge deuterium fuel source is much larger than the core tritium fuel source. The fuel composition of the edge and scrape-off plasmas as well as the isotope fractions in plasma facing components reflect the total through-put of all makeup fuel and are therefore deuterium-rich. This innovative fueling concept results in about a factor of two reduction in tritium inventory of the plasma facing components. The higher tritium burn fraction allows a significant reduction in tritium gas flows into and out of the vacuum vessel and, for fusion reactors, implies lower required tritium breeding ratios.