ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Ken-ichi Hattori, Yoichi Hirano, Yasuyuki Yagi, Toshio Shimada, Kiyoshi Hayase
Fusion Science and Technology | Volume 28 | Number 4 | November 1995 | Pages 1619-1633
Technical Paper | Plasma Engineering | doi.org/10.13182/FST95-A30429
Articles are hosted by Taylor and Francis Online.
Zero-dimensional power balance is analyzed, and an operation boundary is deduced in a “beam-assisted reversed-field pinch”; the latter utilizes partial poloidal current drive by neutral beams so that transport losses arising from magnetohydrodynamics (MHD)-dynamo, i.e., tearing mode instability are reduced. Changes of power flow and heat conductivity due to a beam driven current are treated by considering an MHD-dynamo-based power balance model that assumes linear dependence of magnetic fluctuation level on the externally driven current. It is shown that a ratio of a beam driven current to a dynamo current must not exceed ∼40% regarding a beta-limit in the next generation of plasma experiments (minor radius/major radius = 0.6m/1.8 m, plasma current = 1 MA, poloidal beta = 0.1). At that point, the energy confinement time is predicted to increase by a multiple or so of that estimated from the MHD dynamo model without a current drive.