ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Michael A. Mitchell, Peter Gobby, Norm Elliott
Fusion Science and Technology | Volume 28 | Number 5 | December 1995 | Pages 1844-1848
Technical Paper | Inertial Confinement Fusion Targets | doi.org/10.13182/FST95-A30423
Articles are hosted by Taylor and Francis Online.
Inertial Confinement Fusion (ICF) targets occasionally require the presence of diagnostic dopants to facilitate temperature measurements. To this end poly(4-methyl-1-pentene) (PMP or TPX) foams were produced with very low densities (3 to 5 mg/cc) and low levels of diagnostic dopants. The dopants added to the foams were titanium (Ti), chromium (Cr), and manganese (Mn). The transition metal doped foams were produced with metal loadings as high as 1 wt%, and densities between 3 and 5 mg/cc. The average foam densities were determined using β-transmission, and the dopant amounts were determined using x-ray fluorescence. Procedures for doped foam production and measurements of the resulting foam characteristics will be presented.