ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Veselov A.V., Drozhin V.S., Druzhinin A.A., Izgorodin V.M. Iiyushechkin B.N., Kirillov G.A., Komleva G.V., Korochkin A.M., Medvedev E.F., Nikolaev G.P., Pikulin I.V., Pinegin A.V., Punin V.T., Romaev V.N., Sumatokhin V.L., Tarasova N.N., Tachaev G.V., Cherkesova I.N.
Fusion Science and Technology | Volume 28 | Number 5 | December 1995 | Pages 1838-1843
Technical Paper | Inertial Confinement Fusion Targets | doi.org/10.13182/FST95-A30422
Articles are hosted by Taylor and Francis Online.
The main effort of the ICF target fabrication group is support of the experiments performed on the “ISKRA-4” and “ISKRA-5” laser systems. The main types of targets used in these experiments are direct drive, inverted corona, and indirect drive. A direct drive target is a glass spherical container coated with a metal or polymeric film and filled with a D-T mixture and some diagnostic gas.1,2 The inverted corona target is a spherical shell with holes for introducing laser radiation. The inside surface of the shell is coated with a compound containing heavy hydrogen isotopes.3,4 The indirect drive target is assembled from a spherical shell with holes for introducing laser radiation and a direct drive target placed in the shell center. The inside surface of the shell is coated with high-Z material5 (Fig. 1). For production of direct drive targets, manufacturing techniques have been developed for both hollow glass and polystyrene microspheres. Hollow glass microspheres are fabricated by free-fall of liquid glass drops or dry gel in a 4 meter vertical kiln.6 These methods allow us to manufacture glass microspheres with diameters from 50 µm to 1 mm, wall thicknesses from 0.5 to 10 µm, and aspect ratios (radius/wall) from 20 to 500. The microspheres have a thickness inhomogeneity less than 5% and non-sphericity less than 1%. Polystyrene microspheres are fabricated from polystyrene particles with a blowing agent in a similar vertical kiln. Polystyrene microspheres are fabricated with diameter up to 800 µm and wall thicknesses from 1 to 10 µm.