ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Veselov A.V., Drozhin V.S., Druzhinin A.A., Izgorodin V.M. Iiyushechkin B.N., Kirillov G.A., Komleva G.V., Korochkin A.M., Medvedev E.F., Nikolaev G.P., Pikulin I.V., Pinegin A.V., Punin V.T., Romaev V.N., Sumatokhin V.L., Tarasova N.N., Tachaev G.V., Cherkesova I.N.
Fusion Science and Technology | Volume 28 | Number 5 | December 1995 | Pages 1838-1843
Technical Paper | Inertial Confinement Fusion Targets | doi.org/10.13182/FST95-A30422
Articles are hosted by Taylor and Francis Online.
The main effort of the ICF target fabrication group is support of the experiments performed on the “ISKRA-4” and “ISKRA-5” laser systems. The main types of targets used in these experiments are direct drive, inverted corona, and indirect drive. A direct drive target is a glass spherical container coated with a metal or polymeric film and filled with a D-T mixture and some diagnostic gas.1,2 The inverted corona target is a spherical shell with holes for introducing laser radiation. The inside surface of the shell is coated with a compound containing heavy hydrogen isotopes.3,4 The indirect drive target is assembled from a spherical shell with holes for introducing laser radiation and a direct drive target placed in the shell center. The inside surface of the shell is coated with high-Z material5 (Fig. 1). For production of direct drive targets, manufacturing techniques have been developed for both hollow glass and polystyrene microspheres. Hollow glass microspheres are fabricated by free-fall of liquid glass drops or dry gel in a 4 meter vertical kiln.6 These methods allow us to manufacture glass microspheres with diameters from 50 µm to 1 mm, wall thicknesses from 0.5 to 10 µm, and aspect ratios (radius/wall) from 20 to 500. The microspheres have a thickness inhomogeneity less than 5% and non-sphericity less than 1%. Polystyrene microspheres are fabricated from polystyrene particles with a blowing agent in a similar vertical kiln. Polystyrene microspheres are fabricated with diameter up to 800 µm and wall thicknesses from 1 to 10 µm.