ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
G. Wilemski, T. Boone, L. Cheung, D. Nelson, R. Cook
Fusion Science and Technology | Volume 28 | Number 5 | December 1995 | Pages 1773-1780
Technical Paper | Inertial Confinement Fusion Targets | doi.org/10.13182/FST95-A30411
Articles are hosted by Taylor and Francis Online.
During the drying of polymer shells formed by microencapsulation, vacuole formation is believed to occur as a result of phase separation. To better understand and control this process, we have used a multicomponent diffusion formalism to predict compositional changes in the layer as organic solvents diffuse out and water diffuses into the layer. Formation of thermodynamically unstable compositions can lead to phase separation by condensation of water on submicron foreign particles present in the shell wall. We used statistical mechanics, the UNIFAP methodology, and empirical data to deduce the required values of transport coefficients and equilibrium phase compositions. The results suggest that vacuole formation can be eliminated or reduced by removing submicron and larger particles from the shell wall and by using solvents with lower intrinsic water solubilities.