ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
A. Kumar, Y. Ikeda, M. A. Abdou, M. Z. Youssef, C. Konno, K. Kosako, Y. Oyama, T. Nakamura, H. Maekawa
Fusion Science and Technology | Volume 28 | Number 1 | August 1995 | Pages 173-215
Technical Paper | Fusion Neutronics Integral Experiments — Part I / Blanket Engineering | doi.org/10.13182/FST95-A30405
Articles are hosted by Taylor and Francis Online.
Experimental measurement of nuclear heating rates was carried out in a simulated D-T fusion neutron environment from 1989 through 1992 under the U.S. DOE/JAERI collaborative program at the Fusion Neutronics Source Facility. Small probes of materials were irradiated in close vicinity of a rotating target. A sophisticated microcalorimetric technique was developed for on-line measurements of total nuclear heating in a mixed neutron plus photon field. Measurements with probes of graphite, titanium, copper, zirconium, niobium, molybdenum, tin, tungsten, and lead are presented. These measurements have been analyzed using the three-dimensional Monte Carlo code MCNP and various heating number/kerma factor libraries. The ratio of calculated to experimental (C/E) heating rates shows a large deviation from 1 for all the materials except tungsten. For example, C/E's for graphite range from 1.14 (σ = 10%) to 1.36 (10%) for various kerma factor libraries. Uncertainty estimates on total nuclear heating using a sensitivity approach are presented. Interestingly, C/E data for all libraries and materials can be consolidated to obtain a probability density distribution of C/E's that very much resembles a Gaussian distribution centered at 1.04. The concept of “quality factor” is defined and elaborated so as to take cognizance of observed uncertainties on prediction of nuclear heating for all the nine materials.