ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Y. Oyama, C. Konno, Y. Ikeda, F. Maekawa, H. Maekawa, S. Yamaguchi, K. Tsuda, T. Nakamura, M. A. Abdou, E. F. Bennett, R. F. Mattas, K. G. Porges, M. Z. Youssef
Fusion Science and Technology | Volume 28 | Number 1 | August 1995 | Pages 56-73
Technical Paper | Fusion Neutronics Integral Experiments — Part I / Blanket Engineering | doi.org/10.13182/FST95-A30401
Articles are hosted by Taylor and Francis Online.
The experiments performed in the Japan Atomic Energy Research Institute/U.S. Department of Energy collaborative program on fusion blanket neutronics are designed with consideration of geometrical and material configurations. The general guide that is used to design the engineering-oriented neutronics experiment, which uses an accelerator-based 14-MeV neutron source, is discussed and compared with neutronics characteristics of the reactor models. Preparation of the experimental assembly, blanket materials, and the neutron source is described. A variety of techniques for measuring the nuclear parameters such as the tritium production rate are developed or introduced through the collaboration as a basis of the neutronics experiments. The features of these techniques are discussed with the experimental error and compared with each other.