ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
M. Nakagawa, T. Mori, K. Kosako, Y. Oyama, Y. Ikeda, C. Konno, H. Maekawa, T. Nakamura, M. A. Abdou, E. F. Bennett, M. Z. Youssef, T. Yule
Fusion Science and Technology | Volume 28 | Number 1 | August 1995 | Pages 39-55
Technical Paper | Fusion Neutronics Integral Experiments — Part I / Blanket Engineering | doi.org/10.13182/FST95-A30400
Articles are hosted by Taylor and Francis Online.
The neutron source characteristics of the Japan Atomic Energy Research Institute (JAERI)/U.S. Department of Energy collaborative program on fusion neutronics Phase-IIA and -IIB experiments are determined by measuring neutron spectra and various activation rates in the cavity and on the inner surface of the enclosure and the test regions. The analyses are performed by both JAERI and the United States using individual nuclear data and transport codes. The neutron spectra are generally well predicted by both Monte Carlo and Sn calculations in the energy range of 15 MeV to a few kilo-electron-volts, except for energies 10 to 1 MeV. The discrepancies between the measured and the calculated activation rates are within ±10% when recently evaluated nuclear data are used. Through the present investigation, the characteristics of incident neutrons in the test region can be satisfactorily predicted.