ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
W. M. Stagey, B. L. Pilger, J. A. Mowrey, D. G. Norris, M. Dietsghe, E. A. Hoffman, B. A. Abighedid, A. W. Anthony, M. S. Ayres, T. P. Belflower, J. D. Bohner, S. F. Gaputlu, H. M. Goward, H. M. Diller, J. A. Favorite, P. T. Feir, J. S. Gustafson, N. L. Jenkins, T. L. Johnston, J. L. Martin, C. H. Nahass, D. M. Nichter, D. F. Parker, R. A. Sidwell, A. L. Turner, J. D. Wartell
Fusion Science and Technology | Volume 27 | Number 3 | May 1995 | Pages 326-347
Technical Paper | Fusion Reactor | doi.org/10.13182/FST95-A30394
Articles are hosted by Taylor and Francis Online.
It is suggested that weapons-grade plutonium could be processed through a transmutation facility to build up sufficient actinide and fission product inventories to serve as a deterrent to diversion or theft during subsequent storage, pending eventual use as fuel in commercial nuclear reactors. A transmutation facility consisting of a tokamak fusion neutron source surrounded by fuel assemblies containing the weapons-grade plutonium in the form of PuO2 pebbles in a lithium slurry is investigated. A design concept/operation scenario is developed for a facility that would be able to transmute the world's estimated surplus inventory of weapons-grade plutonium to 11% 240Pu concentration in ∼25 yr. The fusion neutron source would be based on plasma physics and plasma support technology being qualified in ongoing research and development (R&D) programs, and the plutonium fuel would be based on existing technology. A new R&D program would be required to qualify a refractory metal alloy structural material that would be needed to handle the high heat fluxes; otherwise, extensions of existing technologies and acceleration of existing R&D programs would seem to be adequate to qualify all required technologies. Such a facility might feasibly be deployed in 20 to 30 yr, or sooner with a crash program.