ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
W. M. Stagey, B. L. Pilger, J. A. Mowrey, D. G. Norris, M. Dietsghe, E. A. Hoffman, B. A. Abighedid, A. W. Anthony, M. S. Ayres, T. P. Belflower, J. D. Bohner, S. F. Gaputlu, H. M. Goward, H. M. Diller, J. A. Favorite, P. T. Feir, J. S. Gustafson, N. L. Jenkins, T. L. Johnston, J. L. Martin, C. H. Nahass, D. M. Nichter, D. F. Parker, R. A. Sidwell, A. L. Turner, J. D. Wartell
Fusion Science and Technology | Volume 27 | Number 3 | May 1995 | Pages 326-347
Technical Paper | Fusion Reactor | doi.org/10.13182/FST95-A30394
Articles are hosted by Taylor and Francis Online.
It is suggested that weapons-grade plutonium could be processed through a transmutation facility to build up sufficient actinide and fission product inventories to serve as a deterrent to diversion or theft during subsequent storage, pending eventual use as fuel in commercial nuclear reactors. A transmutation facility consisting of a tokamak fusion neutron source surrounded by fuel assemblies containing the weapons-grade plutonium in the form of PuO2 pebbles in a lithium slurry is investigated. A design concept/operation scenario is developed for a facility that would be able to transmute the world's estimated surplus inventory of weapons-grade plutonium to 11% 240Pu concentration in ∼25 yr. The fusion neutron source would be based on plasma physics and plasma support technology being qualified in ongoing research and development (R&D) programs, and the plutonium fuel would be based on existing technology. A new R&D program would be required to qualify a refractory metal alloy structural material that would be needed to handle the high heat fluxes; otherwise, extensions of existing technologies and acceleration of existing R&D programs would seem to be adequate to qualify all required technologies. Such a facility might feasibly be deployed in 20 to 30 yr, or sooner with a crash program.