ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
V. Ya. Goloborod'ko, V. V. Lutsenko, S. N. Reznik, V. A. Yavorskij
Fusion Science and Technology | Volume 27 | Number 3 | May 1995 | Pages 292-297
Technical Paper | Plasma Engineering | doi.org/10.13182/FST95-A30391
Articles are hosted by Taylor and Francis Online.
Three-dimensional Fokker-Planck simulation of collisional losses of mega-electron-volt fusion products in axisymmetric tokamaks with plasma currents I < 2 MA is carried out. The calculations take into account both loss due to radial diffusion and loss caused by pitch-angle scattering in the first-orbit loss region in velocity space. Collisional losses of deuterium-deuterium (D-D) fusion products in the energy range 0.5 ≤ ε/ε0 ≤ 1 (where ε0 is the birth energy) are found to be increased with plasma current and comparable to a first-orbit loss at I > 1.5 MA. The loss mechanism considered may be responsible for the observed experimentally delayed losses of D-D fusion products in the Tokamak Fusion Test Reactor (TFTR). The dependencies of collisional losses on plasma current, effective charge number of the plasma (Zeff), and aspect ratio are investigated. The distributions of escaped ions over pitch angles, energies, and poloidal angles are evaluated. The fraction of collisionally lost fast fusion products is shown to scale like (ν⊥/νs)0.6 or (here ν⊥ and νs are characteristic collision rates of pitch-angle scattering and slowing down, respectively). The approach used may be considered as an alternative to the approach based on Monte Carlo modeling of scattering and can serve as a validity check of the latter.