ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
W. M. Stacey, Jr.
Fusion Science and Technology | Volume 27 | Number 3 | May 1995 | Pages 277-291
Technical Paper | Plasma Engineering | doi.org/10.13182/FST95-A30390
Articles are hosted by Taylor and Francis Online.
The strong radial gradients that exist in the plasma edge (scrape-off layer and divertor) of tokamaks increase the magnitude of some previously neglected viscous terms to the same order as the other terms traditionally included in fluid plasma transport calculations. The standard fluid equations are modified to include these new viscous force and heat flux terms that are important in the plasma edge. These new terms give rise to viscous-driven radial particle and energy fluxes that are estimated to cause an order unity reduction in the radial peaking of energy fluxes incident on divertor collector platesy thus illustrating the importance of taking them into account in fluid calculations of divertor operation. A viscous drift velocity is found to be comparable in magnitude to the standard E × B and pressure gradient-driven drift velocities. The modified fluid equations are formulated to facilitate the inclusion of these important new viscous terms into fluid transport codes used for tokamak edge modeling.