ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Haibo B. Chen, Brian Hilko, Jiong Chen, Emilio Panarella
Fusion Science and Technology | Volume 27 | Number 3 | May 1995 | Pages 245-254
Technical Paper | doi.org/10.13182/FST95-A30387
Articles are hosted by Taylor and Francis Online.
The spherical pinch is an inertial confinement fusion (ICF) system modified by the inclusion of a preformed plasma in the center of a spherical vessel. The central plasma acts as a target for the imploding shock waves of the ICF. Upon compression by these shock waves, the central plasma attains temperatures higher and containment times longer than the ICF, thus facilitating the objective of fusion. The current study examined the spherical pinch as a source of useful radiation for applications that can go from testing mirrors for space exploration to the microscopy of biological specimens, paper radiography, and microlithography. This study was a continuation of previous work in which the radiation emission characteristics of the spherical pinch are theoretically studied. It included a detailed numerical simulation of the spherical pinch model as a radiation emitter in terms of density, pressure, temperature, and bremsstrahlung emission in the whole spectrum and in the soft X-ray region. A better understanding of the radiation production mechanism was thus gained from the current numerical study. Some indications on the usefulness of the concept for industrial applications are provided.