ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
W. L. Baker, J. H. Degnan, J. D. Beason, G. Bird, C. N. Boyer, J. S. Buff, S. K. Coffey, J. F. Davis III, M. H. Frese, J. D. Graham, K. E. Hackett, D. J. Hall, J. L. Holmes, E. A. Lopez, R. E. Peterkin, Jr., D. W. Price, N. F. Roderick, S. W. Seiler, P. J. Turchi
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 124-131
Experimental Device | Special Section: Pulsed High-Density Systems | doi.org/10.13182/FST95-A30369
Articles are hosted by Taylor and Francis Online.
Vacuum inductive-store, plasma flow switch-driven implosion experiments have been performed using the Shiva Star capacitor bank (1300 µf, 3 nH, 120 kV, 9.4 MJ). A coaxial plasma gun arrangement is employed to store magnetic energy in the vacuum volume upstream of a dynamic discharge during the 3- to 4-µs rise of current from the capacitor bank. Motion of the discharge off the end of the inner conductor of the gun releases this energy to implode a coaxial cylindrical foil. The implosion loads are 5-cm-radius, 2-cm-long, 200 to 400 µg/cm2 cylinders of aluminum or aluminized Formvar. With 5 MJ stored initially in the capacitor bank, more than 9 MA are delivered to the implosion load with a rise time of ∼200 ns. The subsequent implosion results in a radiation output of 0.95 MJ at a power exceeding 5 TW (assuming isotropic emission). Experimental results and related two-dimensional magnetohydrodynamic simulations are discussed.