ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Fusion office bill introduced in line with DOE reorganization plan
Cornyn
Padilla
Sens. Alex Padilla (D., Calif.) and John Cornyn (R., Texas) have introduced bipartisan legislation to formally establish the Office of Fusion at the Department of Energy. This move seeks to codify one of the many changes put forward by the recent internal reorganization plan for offices at the DOE.
Companion legislation has been introduced in the House of Representatives by Reps. Don Beyer (D., Va.) and Jay Obernolte (R., Calif.), who are cochairs of the House Fusion Energy Caucus.
Details: According to Obernolte, “Congress must provide clear direction and a coordinated federal strategy to move fusion from the lab to the grid, and this legislation does exactly that.”
George Tsotridis, Hans Rother
Fusion Science and Technology | Volume 27 | Number 4 | July 1995 | Pages 389-400
Technical Paper | First-Wall Technology | doi.org/10.13182/FST95-A30359
Articles are hosted by Taylor and Francis Online.
Plasma disruptions infusion reactors lead to high-energy deposition for short periods of time, causing melting of the first wall. A two-dimensional transient computer model has been developed that, by solving the equations of motion and energy, predicts the depths and the motion of the molten layers in small beam simulation experiments. It is demonstrated that convective flows caused by variations of surface tension—due to changes in material chemistry and surface temperature—play an important role in determining the depth and flow intensities of the molten layers. The calculated shapes and depths of the molten layers for Type 316 stainless steel have been compared with available experimental results and found to be in good agreement.