ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Akito Takahashi, Toshiyuki Iida, Hiroyuki Miyamaru, Morio Fukuhara
Fusion Science and Technology | Volume 27 | Number 1 | January 1995 | Pages 71-85
Technical Paper | Nuclear Reaction in Solid | doi.org/10.13182/FST95-A30351
Articles are hosted by Taylor and Francis Online.
Worldwide cold fusion experiments have given anomalous results with regard to levels of kilo-electronvolts per atom excess heat, 4He generation, level of emission of neutrons and tritons with a 10−4 to 10−7 neutron-to-triton yield ratio, and emission of high-energy charged particles, which cannot be explained by the known d + d fusion process. A previously proposed multibody deuteron fusion model in solids is elaborated further to explain these anomalous results. A transient dynamics in metal deutendes is proposed to generate close pairs and clusters of deuterons with time-dependent deep atomic potential inducing a strong screening effect on Coulomb barrier penetration. Very approximate numerical estimations of reaction rates for the competing 2D, 3D, and 4D fusion processes in PdDx and TiDx are obtained with high-level reaction rates enough to explain observed heat levels. Decay channels of virtual compound states, i.e., 4He*, 5Li*, 6Li*, 7Be*, and 8Be* by 2D, H + 2D, 3D, H + 3D, and 4D fusions, are discussed in detail to know the nuclear products. Major generation of 4He by H + 2D, 3D, H + 3D, and 4D processes are concluded. Identification of particle types and their specific released kinetic energies is given to explain measured charged-particle spectra by deuteron beam implantation experiments.