ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
G. Bellanger
Fusion Science and Technology | Volume 27 | Number 1 | January 1995 | Pages 36-45
Technical Paper | Tritium System | doi.org/10.13182/FST95-A30348
Articles are hosted by Taylor and Francis Online.
Palladium-silver cathodic membranes are used in industrial tritiated water processing to produce very high purity tritium gas and its isotopes. During electrolysis, these adsorb on the cathodic surface, diffuse through the alloy, and finally are desorbed on the side opposite of the cathodic entry surface. This desorption occurs in a gastight compartment separated from the electrolyzer allowing the recuperation of pure isotopes. The diffusion is dependent on cathodic surface, PdAg thickness, temperature, deposits on the surface to favor the adsorption, and applied cathodic potential. Here, the embrittlement of palladium and PdAg alloy cathode membranes and the diffusion and solubility parameters were studied in tritiated water. Voltammetry curves were plotted to ascertain the conditions of cathodic charging with tritium as well as the effect ofradiolytic hydrogen peroxide on palladium or PdAg. From the voltammetric curves, the diffusion coefficient, the surface solubility of tritium, and the thickness of the palladium and PdAg alloy involved were determined. Scanning electron microscope examinations show that the cracking is transgranular in the case of palladium, while it appears to be intergranularfor the PdAg alloy. With palladium, this cracking involves all the surface subjected to charging, whereas for the alloy, only the surface at the electrolyzer gas atmosphere/electrolyte bordering zone would appear to be embrittled. This could be the result of the presence of two tritiated phases in palladium or in palladium-silver. The PdAg alloy is the less sensitive to embrittlement.