ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yoshinori Kawamura, Masabumi Nishikawa
Fusion Science and Technology | Volume 27 | Number 1 | January 1995 | Pages 25-35
Technical Paper | Blanket Engineering | doi.org/10.13182/FST95-A30347
Articles are hosted by Taylor and Francis Online.
The release behavior of tritium bred in the blanket has been studied with in-situ experiments, and most of the results are analyzed assuming that the overall release process of tritium is mainly controlled with the process of tritium diffusion in the crystal grain. However, quantification of the water adsorption and desorption rate on various ceramic breeder materials is important because the chemical form of release tritium is tritiated water. The current authors carried out the water adsorption and desorption experiments on various ceramic breeder materials using a breakthrough method and the adsorption and desorption rate of water at the surface of various ceramic breeder materials were estimated from the breakthrough curve and release curve of water obtained in this work. The breakthrough curves or desorption curves were expressed assuming that two kinds of adsorption or desorption processes having different mass transfer rates proceed at the same time. The hypothetical tritium diffusivities in the crystal grain evaluated from the water desorption rate obtained in this work were compared with the reported value as the tritium diffusivity in the crystal grain. It is probable that the tritium diffusivity in the crystal grain reported so far is strongly affected by the resistance of surface reaction and the system effect.