ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Yoshinori Kawamura, Masabumi Nishikawa
Fusion Science and Technology | Volume 27 | Number 1 | January 1995 | Pages 25-35
Technical Paper | Blanket Engineering | doi.org/10.13182/FST95-A30347
Articles are hosted by Taylor and Francis Online.
The release behavior of tritium bred in the blanket has been studied with in-situ experiments, and most of the results are analyzed assuming that the overall release process of tritium is mainly controlled with the process of tritium diffusion in the crystal grain. However, quantification of the water adsorption and desorption rate on various ceramic breeder materials is important because the chemical form of release tritium is tritiated water. The current authors carried out the water adsorption and desorption experiments on various ceramic breeder materials using a breakthrough method and the adsorption and desorption rate of water at the surface of various ceramic breeder materials were estimated from the breakthrough curve and release curve of water obtained in this work. The breakthrough curves or desorption curves were expressed assuming that two kinds of adsorption or desorption processes having different mass transfer rates proceed at the same time. The hypothetical tritium diffusivities in the crystal grain evaluated from the water desorption rate obtained in this work were compared with the reported value as the tritium diffusivity in the crystal grain. It is probable that the tritium diffusivity in the crystal grain reported so far is strongly affected by the resistance of surface reaction and the system effect.