ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
L. Bühler
Fusion Science and Technology | Volume 27 | Number 1 | January 1995 | Pages 3-24
Technical Paper | Blanket Engineering | doi.org/10.13182/FST95-A30346
Articles are hosted by Taylor and Francis Online.
Magnetohydrodynamic flows play an important role in the design of liquid-metal fusion reactor blankets. The interaction of the plasma-confining strong magnetic field and the electrically conducting coolant and breeding material may cause high pressure drop and unusual flow structures compared with hydrodynamic flows. In strong magnetic fields, duct flows exhibit a core where viscous effects are unimportant, while all flow variables are matched to the boundary conditions within extremely thin layers. In the inertialess inductionless limit, the governing equations can be reduced to a set of coupled two-dimensional equations for pressure and potential through analytical integration in the core and the layers. The use of curvilinear boundary-fitted coordinates leads to a unique numerical procedure for flow calculations in arbitrary geometries. The wide range of possible applications is demonstrated by some examples.