ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Illinois legislature lifts ban on nuclear energy, funds clean energy
The Illinois General Assembly passed a clean energy bill on October 30 that would, in part, lift a 30-year moratorium on new nuclear energy in the state and create incentives for more energy storage.
L. Bühler
Fusion Science and Technology | Volume 27 | Number 1 | January 1995 | Pages 3-24
Technical Paper | Blanket Engineering | doi.org/10.13182/FST95-A30346
Articles are hosted by Taylor and Francis Online.
Magnetohydrodynamic flows play an important role in the design of liquid-metal fusion reactor blankets. The interaction of the plasma-confining strong magnetic field and the electrically conducting coolant and breeding material may cause high pressure drop and unusual flow structures compared with hydrodynamic flows. In strong magnetic fields, duct flows exhibit a core where viscous effects are unimportant, while all flow variables are matched to the boundary conditions within extremely thin layers. In the inertialess inductionless limit, the governing equations can be reduced to a set of coupled two-dimensional equations for pressure and potential through analytical integration in the core and the layers. The use of curvilinear boundary-fitted coordinates leads to a unique numerical procedure for flow calculations in arbitrary geometries. The wide range of possible applications is demonstrated by some examples.