ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
L. Bühler
Fusion Science and Technology | Volume 27 | Number 1 | January 1995 | Pages 3-24
Technical Paper | Blanket Engineering | doi.org/10.13182/FST95-A30346
Articles are hosted by Taylor and Francis Online.
Magnetohydrodynamic flows play an important role in the design of liquid-metal fusion reactor blankets. The interaction of the plasma-confining strong magnetic field and the electrically conducting coolant and breeding material may cause high pressure drop and unusual flow structures compared with hydrodynamic flows. In strong magnetic fields, duct flows exhibit a core where viscous effects are unimportant, while all flow variables are matched to the boundary conditions within extremely thin layers. In the inertialess inductionless limit, the governing equations can be reduced to a set of coupled two-dimensional equations for pressure and potential through analytical integration in the core and the layers. The use of curvilinear boundary-fitted coordinates leads to a unique numerical procedure for flow calculations in arbitrary geometries. The wide range of possible applications is demonstrated by some examples.