ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
N. Aslan, T. Kammash
Fusion Science and Technology | Volume 26 | Number 2 | September 1994 | Pages 184-191
Technical Paper | ICF Target | doi.org/10.13182/FST94-A30342
Articles are hosted by Taylor and Francis Online.
Interest in the use of magnetized targets to enhance energy multiplication in inertial confinement fusion has recently been revived after being ignored for some time. The addition of an externally applied magnetic field to a fuel volume to reduce thermal conduction losses represents one approach. The other approach is the subject examined, namely, self-generated fields created inside a target by beams that enter the pellet through a hole. The field, current, and pressure profiles in a two-region spherical plasma that might be representative of the magnetically insulated inertial confinement fusion concept are calculated in a self-consistent manner. The existence of a quasi-equilibrium soon after the formation of the plasma in the target is assumed, the appropriate magnetohydrodynamic equations in a multiregion plasma configuration are solved, and the parameters for such an equilibrium are established. An energy integral is employed to study the stability of these configurations against azimuthally symmetric perturbations, and the results are applied to some experimental as well as reactor-like systems. For certain configurations and input energies, such systems can be stable for the length of the burn.