ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
A. Stäbler, J. Sielanko, S. Götz, E. Speth
Fusion Science and Technology | Volume 26 | Number 2 | September 1994 | Pages 145-152
Technical Paper | Plasma Heating System | doi.org/10.13182/FST94-A30338
Articles are hosted by Taylor and Francis Online.
Powerful neutral beams used in many present-day magnetic fusion devices to heat the plasma to high temperatures must pass a region of finite background pressure where the magnetic stray field is rather high. Reionization of neutral beam particles and their subsequent deflection onto walls may lead to serious power loadings if no proper protection is provided. The simulation of this problem for the neutral beam injection system of the ASDEX-Upgrade tokamak is examined. The magnetic field distribution and the particle trajectories are calculated in full three-dimensional geometry. The statistical methods applied to simulate the ∼106 beam particles necessary to obtain a reliable power density distribution on the various surfaces of the duct region are described in some detail. Results are given for different magnetic field configurations of the tokamak. Because of the focusing effect of the strongly varying magnetic field, power densities in excess of 2 MW/m2 are found in extreme cases. Additional large area shieldings are installed to protect the most exposed regions of the entrance port of the vessel.