ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
A. Stäbler, J. Sielanko, S. Götz, E. Speth
Fusion Science and Technology | Volume 26 | Number 2 | September 1994 | Pages 145-152
Technical Paper | Plasma Heating System | doi.org/10.13182/FST94-A30338
Articles are hosted by Taylor and Francis Online.
Powerful neutral beams used in many present-day magnetic fusion devices to heat the plasma to high temperatures must pass a region of finite background pressure where the magnetic stray field is rather high. Reionization of neutral beam particles and their subsequent deflection onto walls may lead to serious power loadings if no proper protection is provided. The simulation of this problem for the neutral beam injection system of the ASDEX-Upgrade tokamak is examined. The magnetic field distribution and the particle trajectories are calculated in full three-dimensional geometry. The statistical methods applied to simulate the ∼106 beam particles necessary to obtain a reliable power density distribution on the various surfaces of the duct region are described in some detail. Results are given for different magnetic field configurations of the tokamak. Because of the focusing effect of the strongly varying magnetic field, power densities in excess of 2 MW/m2 are found in extreme cases. Additional large area shieldings are installed to protect the most exposed regions of the entrance port of the vessel.