ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
S. Chaturvedi, R. G. Mills
Fusion Science and Technology | Volume 26 | Number 2 | September 1994 | Pages 133-144
Technical Paper | Plasma Heating System | doi.org/10.13182/FST94-A30337
Articles are hosted by Taylor and Francis Online.
The important mechanisms of energy flow in a quasi-isobaric magnetic fusion device have been studied in a three-part paper. In Part I, the spatial profiles of plasma parameters that yield acceptable values of Qdt and plasma dimensions, were determined. These profiles were determined by balancing the dominant terms in the differential energy equations, i.e., conduction, bremsstrahlung, and collisional energy exchange, against each other. One class of equilibria was identified for a more detailed study. In Part II, the contributions of inelastic processes, radiation transport, and alpha-particle heating were studied. These terms, in combination with the dominant terms studied earlier, yield the spatial profile of external heating that is required to balance the energy equations everywhere in the plasma. In Part III, the results of ray-tracing calculations for waves in the lower hybrid range are reported. These calculations show that it is possible to produce such a deposition profile for both electrons and ions, if the launch structure can couple the required k spectrum through the high-density edge plasma.