ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. Naguib Aly, H. H. Abou-Gabal
Fusion Science and Technology | Volume 26 | Number 2 | September 1994 | Pages 125-132
Technical Paper | Plasma Engineering | doi.org/10.13182/FST94-A30336
Articles are hosted by Taylor and Francis Online.
A point-kinetics model is used to investigate the effect of the amount of auxiliary power and energy of the injected neutral beam on the dynamics of the International Thermonuclear Experimental Reactor (ITER). Four different confinement scalings are tried. A multigroup slowing-down method is followed to consider the finite thermalization time of the fusion fast alpha particles and the injected neutral beam particles. The analysis shows the ability of the reactor to approach a steady-state operation. An auxiliary heating scenario of 20 MW and 1.3 MeV neutral beam allows steady-state operation without violating the beta limit. The analysis also shows the sensitivity of the reactor dynamics to the confinement scaling. In addition, the analysis shows that the reactor power can be increased by increasing the rate of the injected fuel, but varying the energy of the injected fuel does not affect the reactor power.