ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. Naguib Aly, H. H. Abou-Gabal
Fusion Science and Technology | Volume 26 | Number 2 | September 1994 | Pages 125-132
Technical Paper | Plasma Engineering | doi.org/10.13182/FST94-A30336
Articles are hosted by Taylor and Francis Online.
A point-kinetics model is used to investigate the effect of the amount of auxiliary power and energy of the injected neutral beam on the dynamics of the International Thermonuclear Experimental Reactor (ITER). Four different confinement scalings are tried. A multigroup slowing-down method is followed to consider the finite thermalization time of the fusion fast alpha particles and the injected neutral beam particles. The analysis shows the ability of the reactor to approach a steady-state operation. An auxiliary heating scenario of 20 MW and 1.3 MeV neutral beam allows steady-state operation without violating the beta limit. The analysis also shows the sensitivity of the reactor dynamics to the confinement scaling. In addition, the analysis shows that the reactor power can be increased by increasing the rate of the injected fuel, but varying the energy of the injected fuel does not affect the reactor power.