ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. Singh, M. D. Saksena, V. S. Dixit, V. B. Kartha
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 266-270
Technical Note | Nuclear Reaction in Solid | doi.org/10.13182/FST94-A30331
Articles are hosted by Taylor and Francis Online.
A direct current arc was run between ultrapure graphite electrodes dipped in ultrapure water for 1 to 20 h. The graphite residue collected at the bottom of the water trough was analyzed for iron content by a conventional spectrographic method. It was found, in the first few experiments, that the iron content in the graphite residue was fairly high, depending on the duration of the arcing. The experiment was repeated initially six times, and the results showed large variations in iron content [50 to 2000 parts per million (ppm)] in the carbon residue. In the second series of experiments, which were done with the water trough fully covered, the amount of iron in the carbon residue decreased significantly (20 to 100 ppm). Here also there were large variations in the iron concentration in the residue, although the experiments were performed under identical conditions. Whether iron is really being synthesized through transmutation from carbon and oxygen as suggested by George Oshawa or is getting concentrated to different degrees through some other phenomenon is not currently clear. The iron in the carbon residue was also analyzed mass spectrometrically for the abundance of its various isotopes, and the results were more or less the same as that of natural iron. Besides iron, the presence of other elements like silicon, nickel, aluminum, and chromium was also determined in the carbon residue, and it was found that the variation of their concentrations followed the same pattern as that of iron.