ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
V. Basiuk, A. Bécoulet, T. Hutter, G. Martin, A. L. Pecquet, B. Saoutic
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 222-226
Technical Paper | Experimental Device | doi.org/10.13182/FST94-A30324
Articles are hosted by Taylor and Francis Online.
During additional heating in Tore Supra [ion cyclotron resonance frequency (ICRF) or neutral beam injection], fast ion losses due to the toroidal field ripple were clearly measured by a set of graphite probes. This detector collects the flow of fast ions entering a vertical port and usually shows a maximum flux for ions originating from the vicinity of surface δ* = 0. During the monster sawteeth regime, achieved with ICRF, a remarkable phenomenon was observed: an ejection of fast ions that were not correlated with any measured magnetohydrodynamic activity. The radial distribution of these ions was quite different from the distribution usually observed exhibiting a peak located in the central section of the plasma. A new diagnostic is being constructed for measurement of the energy distribution of these ions, from 80 keV (energy of the neutral beam injected in Tore Supra) up to 1 MeV (expected during ICRF). The principle of the diagnostic is the identification of the ions through their energy by using their Larmor radius (ρ = 1.3 cm for 100 keV → ρ = 3.6 cm for 700 keV, B = 4T). The detector is made of a hollow graphite cylinder with a small entrance slot, located in a vertical port on the ion drift side. An array of six metallic collectors placed inside the graphite cylinder intercepts the ions. The current on each collector was estimated at 10 → 100 nA, during ICRF heating. The energy resolution of this diagnostic is expected to be ∼20 keV for the lowest energy range and 100 keV for the highest energy range. This type of elementary detector might be extrapolated for the measurements of alpha-particle losses in future deuterium-tritium experiments. It should also be suitable for studies of stochastic ripple diffusion.