ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Sümer Şahın, Ralph W. Moir, Sabahattin Ünalan
Fusion Science and Technology | Volume 26 | Number 4 | December 1994 | Pages 1311-1325
Technical Paper | Fusion Reactor | doi.org/10.13182/FST94-A30316
Articles are hosted by Taylor and Francis Online.
A neutron physics analysis of the modified PACER concept was conducted to assess the required liquid zone thickness of which the volume fraction is 25% in the form of Li2BeF4 (Flibe) jets and 75% as void. These liquid jets surround a low-yield nuclear fusion explosive and protect the chamber walls. The neutronic calculations assumed a 30-m-radius underground spherical geometry cavity with a 1-cm-thick stainless steel liner attached to the excavated rock wall. Achievement of tritium breeding ratios of1.05 and LIS requires a Flibe thickness of 1.6 and 2.0 m, respectively, which results in average energy densities of 24 900 and 19085 J/g. Our calculations show that for a Flibe zone thickness > 2.5 m, the activation of the steel liner and rock would be low enough after 30 yr of operation that the cavity would satisfy the U.S. Nuclear Regulatory Commission's rules for “shallow burial” upon decommissioning, assuming other sources of radioactivity could be removed or qualified as well. This means that upon decommissioning, the site could essentially be abandoned, or the cavity could be used as a shallow burial site for other qualified materials.