ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Argonne investigates industrial SMR applications for postwar Ukraine
Argonne National Laboratory will play a leading role in planning and rebuilding a nuclear-generated clean energy infrastructure for postwar Ukraine as part of the lab’s focus on developing small modular reactor applications to help countries meet energy security goals. The latest plans, described in a November 19 article, were announced on November 16 at COP29 in Baku, Azerbaijan.
Mamoru Matsuoka, Masanori Araki, Makoto Mizuno†
Fusion Science and Technology | Volume 26 | Number 4 | December 1994 | Pages 1296-1303
Technical Paper | Energy Storage, Switching, and Conversion | doi.org/10.13182/FST94-A30314
Articles are hosted by Taylor and Francis Online.
The concept of a direct energy recovery system that applies a varying magnetic field is proposed for a negative-ion-based neutral beam injection system (NNB) to heat a plasma and/or drive a plasma current in a fusion reactor. The output beam energy and power of such an NNB will be ∼1 MeV and ∼ 10 MW/beamline, respectively, and nearly the same amounts of positive- and negative-ion beams remain unneutralized in an NNB by using a gas-neutralizing cell. Therefore, the output of a beam direct converter in an NNB is a bipolar direct current (dc) electric power with close to ±1 MV and several amperes if a conventional electrostatic or magnetostatic field is applied for ion beam separation. However, such high-voltage dc power is difficult to handle at the point of the regeneration of the power back to a commercial electric line because a very high voltage inverter tough enough to withstand occasional sparkdowns at recovery electrodes is required. If residual positive- and negative-ion beams are introduced to two or more electrodes in turn by a varying magnetic field, an alternating current (ac) electric power can be produced directly. The ac voltage can be easily lowered by a stepdown transformer, and a conventional, low-voltage inverter can be used. Such a beam direct converter will greatly reduce the technological difficulty involved in the regeneration of a recovered electric energy. The total efficiency of an NNB will be improved from ∼45 to ∼70% with a beam direct converter.