ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Massimo Zucchetti
Fusion Science and Technology | Volume 26 | Number 4 | December 1994 | Pages 1275-1287
Technical Paper | Safety/Environmental Aspect | doi.org/10.13182/FST94-A30312
Articles are hosted by Taylor and Francis Online.
Activation data are needed for many evaluations concerning fusion reactors and, in particular, safety and environmental impact assessments. A stepwise description of the activation analysis process is given. A neutron source description for one-dimensional neuronic models is compared with that for three-dimensional models. Concerning neutron flux calculations, the choice between one-dimensional deterministic codes and three-dimensional Monte-Carlo codes is examined, taking into account their interface with activation codes. A reliable inventory code and an updated activation library are essential to obtain good activation data: The problems in the modeling of either pulsed irradiation or operation at different flux levels are tackled. The analysis and comparison of activation calculations for two different machine concepts [the Next European Torus (NET)/International Thermonuclear Experimental Reactor (ITER) and Ignitor], are carried out, showing how pulsed irradiation affects the results in the two cases and the main differences between the two analyses. As an example of the application of inventory calculations, a classification of NET/ITER and Ignitor materials into waste categories is proposed and discussed.