ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
E. Tucker, J. Gilligan
Fusion Science and Technology | Volume 26 | Number 4 | December 1994 | Pages 1265-1274
Technical Paper | First-Wall Technology | doi.org/10.13182/FST94-A30311
Articles are hosted by Taylor and Francis Online.
Energetic (> 10-keV) particles incident on divertor plate surfaces may penetrate the vapor shield formed under extremely high heat flux conditions (> 1010 W/m2). In this case, the total energy transmission factor f through the vapor shield can increase drastically, which leads to more surface damage. A one-dimensional time-dependent coupled magnetohydrodynamic-radiation transport code MAGFIRE, originally used in modeling the vapor shield development under a blackbody radiation source, has been modified to include a charged-particle source. The sources used to model a disruption are monoenergetic beams of electrons and/or deuter-ons with any given incident heat flux and energy per particle. An electron source (≤20 keV) will eventually (for times ≤10 µs) be completely absorbed by the vapor resulting in f converging to the same f (for times ≥100 µs) as an equivalent ion heat flux source. Results show that in fact all three sources converge (at ∼100 µs) to the same steady-state value of f for any given heat flux. Results also show that steady-state f decreases for increasing heat fluxes on a carbon surface. Non-steady-state f, however, depends on total incident beam energy fluence and electron energy per particle. The energetic electron spectrum incident on divertor plates during a disruption needs to be measured on large tokamaks so that reliable simulation can be done for International Thermonuclear Experimental Reactor (ITER)-like conditions.