ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
E. Tucker, J. Gilligan
Fusion Science and Technology | Volume 26 | Number 4 | December 1994 | Pages 1265-1274
Technical Paper | First-Wall Technology | doi.org/10.13182/FST94-A30311
Articles are hosted by Taylor and Francis Online.
Energetic (> 10-keV) particles incident on divertor plate surfaces may penetrate the vapor shield formed under extremely high heat flux conditions (> 1010 W/m2). In this case, the total energy transmission factor f through the vapor shield can increase drastically, which leads to more surface damage. A one-dimensional time-dependent coupled magnetohydrodynamic-radiation transport code MAGFIRE, originally used in modeling the vapor shield development under a blackbody radiation source, has been modified to include a charged-particle source. The sources used to model a disruption are monoenergetic beams of electrons and/or deuter-ons with any given incident heat flux and energy per particle. An electron source (≤20 keV) will eventually (for times ≤10 µs) be completely absorbed by the vapor resulting in f converging to the same f (for times ≥100 µs) as an equivalent ion heat flux source. Results show that in fact all three sources converge (at ∼100 µs) to the same steady-state value of f for any given heat flux. Results also show that steady-state f decreases for increasing heat fluxes on a carbon surface. Non-steady-state f, however, depends on total incident beam energy fluence and electron energy per particle. The energetic electron spectrum incident on divertor plates during a disruption needs to be measured on large tokamaks so that reliable simulation can be done for International Thermonuclear Experimental Reactor (ITER)-like conditions.