ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Akiyoshi Hatayama, Masatada Ogasawara, Michinori Yamauchi, Kunihiko Okano, Yuzo Fukai, Tomoaki Yoshida, Tadasu Takuma, Kenji Yamaji
Fusion Science and Technology | Volume 26 | Number 1 | August 1994 | Pages 27-45
Technical Paper | Fusion Reactor | doi.org/10.13182/FST94-A30299
Articles are hosted by Taylor and Francis Online.
Plasma size and other basic performance parameters for 1000-MW (electric) power production are calculated with the blanket energy multiplication factor, the M value, as a parameter. The calculational model is based on the International Thermonuclear Experimental Reactor (ITER) physics design guidelines and includes overall plant power flow. Plasma size decreases as the M value increases. However, the improvement in the plasma compactness and other basic performance parameters, such as the total plant power efficiency, becomes saturated above the M = 5 to 7 range. Thus, a value in the M = 5 to 7 range is a reasonable choice for 1000-MW (electric) hybrids. Typical plasma parameters for 1000-MW (electric) hybrids with a value of M = 7 are a major radius of R = 5.2 m, minor radius of a = 1.7 m, plasma current of Ip = 15 MA, and toroidal field on the axis of B0 = 5 T. The concept of a thermal fission blanket that uses light water as a coolant is selected as an attractive candidate for electricity-producing hybrids. An optimization study is carried out for this blanket concept. The result shows that a compact, simple structure with a uniform fuel composition for the fissile region is sufficient to obtain optimal conditions for suppressing the thermal power increase caused by fuel burnup. The maximum increase in the thermal power is +3.2%. The M value estimated from the neutronics calculations is ∼ 7.0, which is confirmed to be compatible with the plasma requirement. These studies show that it is possible to use a tokamak fusion core with design requirements similar to those of ITER for a 1000-MW(electric) power reactor that uses existing thermal reactor technology for the blanket.