ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
ANS 2025 Annual Conference details
The American Nuclear Society’s 2025 Annual Conference will take place June 15–18 this year in Chicago at the Downtown Marriott. The conference is an opportunity to take part in one of the largest gatherings of nuclear professionals in the country and engage with leaders from across the nuclear science and technology landscape. In addition to an impressive list of government and industry leaders, ANS is also planning several outstanding hot-topic technical sessions and popular plenary speakers.
B. Coppi, P. Detragiache, S. Migliuolo, M. Nassi,, B. Rogers
Fusion Science and Technology | Volume 25 | Number 3 | May 1994 | Pages 353-367
Technical Paper | Alpha-Particle Special / Experimental Device | doi.org/10.13182/FST94-A30292
Articles are hosted by Taylor and Francis Online.
The Ignitor experiment has been designed to achieve fusion burn and ignition conditions in a high-density deuterium-tritium (D-T) plasma with a compact high magnetic field confinement configuration. The recent addition of a powerful system of radio-frequency heating to the design of Ignitor allows the investigation of physics issues relevant to advanced D-3He reactors and the second stability region forfinite-β plasmas. To maximize the production of D-3He power, a lower density regime is considered (e.g., n0 ≃ 3 × 1020 m−3) than that found to be optimal for D-T ignition (n0 ≃ 1 × 1021 m−3). This allows a relatively large population of 3He nuclei at high energies ≳0.65 MeV to be produced by a high density of injected power at the 3He ion cyclotron frequency (up to 18 MW injected in the plasma column of volume ≲10 m3). The investigation of second stability region access can be carried out in relatively low magnetic field and plasma current regimes with the added benefit that the duration of the plasma discharge can be extended over relatively long times. In fact, the Ignitor magnets can be brought down to an initial temperature of 30 K by gas-helium cooling. The low aspect ratio (≃2.8) and elongated plasma cross section of Ignitor make it suitable to reach both finite-β conditions and interesting plasma regimes at the same time. The Candor concept is the next step in the evolution of the Ignitor program. Candor is capable of producing plasma currents up to 25 MA with toroidal magnetic fields BT ≃ 13 T. Unlike Ignitor, Candor would operate with values of βp around 1.5 and with the central part of the plasma column in the second stability region. The D-3He ignition in this case can be reached by a combination of ICRF heating and alpha-particle heating due to D-T fusion reactions.