ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Richard O. Dendy, Chris N. Lashmore-Davies, Geoff A. Cottrell, Kenneth G. McClements, Kin F. Kam
Fusion Science and Technology | Volume 25 | Number 3 | May 1994 | Pages 334-340
Technical Paper | Alpha-Particle Special / Experimental Device | doi.org/10.13182/FST94-A30290
Articles are hosted by Taylor and Francis Online.
There exist strong observational links between ion cyclotron emission (ICE) and fusion reactivity in tokamak plasmas. These links originally emerged from deuterium discharges in the Joint European Torus (JET) and were demonstrated most recently in the Preliminary Tritium Experiment. They include the proportionality of ICE intensity to measured fusion reactivity over six decades in signal intensity; correlations in the time evolution of the ICE signal and neutron flux during discharges; the matching of the spectral peak frequencies to successive local ion cyclotron harmonics at the outer midplane edge; and correlations between ICE and the observed impact of magnetohydrodynamic activity, such as sawteeth and edge-localized modes, on energetic ions. The observations are broadly consistent with the excitation of the fast Alfvén wave through cyclotron resonance with the local non-Maxwellian fusion product population — the so-called magnetoacoustic cyclotron instability. The theory of this instability is extended to the regime of arbitrary k||, in which it is necessary to include both wave-particle cyclotron damping and the positive-energy loading due to resonant cyclotron harmonic waves supported by the thermal ions. The consequences of arbitrary k|| for the instability thresholds are described. An outline is given of the close similarities between ICE from tokamaks and signals at multiple ion cyclotron harmonics observed in the Earth's magnetosphere, which apparently originate from regions where there is a ring-type population of energetic protons. This emission also appears to be explicable in terms of the magnetoacoustic cyclotron instability, and comparison with tokamak observations yields information on the distinction between features generic to the emission mechanism and those specific to particular magnetic geometries.