ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Richard O. Dendy, Chris N. Lashmore-Davies, Geoff A. Cottrell, Kenneth G. McClements, Kin F. Kam
Fusion Science and Technology | Volume 25 | Number 3 | May 1994 | Pages 334-340
Technical Paper | Alpha-Particle Special / Experimental Device | doi.org/10.13182/FST94-A30290
Articles are hosted by Taylor and Francis Online.
There exist strong observational links between ion cyclotron emission (ICE) and fusion reactivity in tokamak plasmas. These links originally emerged from deuterium discharges in the Joint European Torus (JET) and were demonstrated most recently in the Preliminary Tritium Experiment. They include the proportionality of ICE intensity to measured fusion reactivity over six decades in signal intensity; correlations in the time evolution of the ICE signal and neutron flux during discharges; the matching of the spectral peak frequencies to successive local ion cyclotron harmonics at the outer midplane edge; and correlations between ICE and the observed impact of magnetohydrodynamic activity, such as sawteeth and edge-localized modes, on energetic ions. The observations are broadly consistent with the excitation of the fast Alfvén wave through cyclotron resonance with the local non-Maxwellian fusion product population — the so-called magnetoacoustic cyclotron instability. The theory of this instability is extended to the regime of arbitrary k||, in which it is necessary to include both wave-particle cyclotron damping and the positive-energy loading due to resonant cyclotron harmonic waves supported by the thermal ions. The consequences of arbitrary k|| for the instability thresholds are described. An outline is given of the close similarities between ICE from tokamaks and signals at multiple ion cyclotron harmonics observed in the Earth's magnetosphere, which apparently originate from regions where there is a ring-type population of energetic protons. This emission also appears to be explicable in terms of the magnetoacoustic cyclotron instability, and comparison with tokamak observations yields information on the distinction between features generic to the emission mechanism and those specific to particular magnetic geometries.