ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Fong-Yan Gang, D. J. Sigmar, Jean-Noel Leboeuf, Fredrik Wising
Fusion Science and Technology | Volume 25 | Number 3 | May 1994 | Pages 266-277
Technical Paper | Alpha-Particle Special / Plasma Engineering | doi.org/10.13182/FST94-A30283
Articles are hosted by Taylor and Francis Online.
Recent developments in computational and theoretical studies of alpha-particle-driven Alfvén turbulence in both the long (k⊥ρi ≪ 1) and the short (k⊥ρi ≤ 1) wavelength regimes are reported. In the long wavelength regime, a hybrid particle-fluid model is solved numerically as well as analytically in a simple slab geometry. The dominant nonlinear interactions are found to be couplings between two Alfvén waves to generate a zero-frequency electromagnetic convective cell and strong E × B convection of resonant alpha particles, which result in significant changes in plasma equilibria. The fluctuation energies first increase, then saturate and decay. The alpha-particle transport is convective and significant but does not necessarily lead to an appreciable alpha-particle loss. A mode-coupling theory is developed to explain the simulation results. In the short wavelength regime, a reduced turbulence model that describes the coupled nonlinear evolutions of fluctuation spectrum and alpha-particle density profile nα(r,t) in the presence of an alpha-particle source Sα(r, t) is solved numerically. A steady state is achieved. The nonlinear saturation is due to ion Compton scattering-induced energy transfer to higher wave numbers. Alpha-particle transport is significant, and a diffusion coefficient of Dα ≃ 0.5 m2/s for International Thermonuclear Experimental Reactor (ITER)-like parameters is obtained. The effect of anomalous alpha-particle diffusion on alpha-particle power coupling to bulk plasmas is also discussed.