ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
S. Chaturvedi*, R. G. Mills
Fusion Science and Technology | Volume 25 | Number 2 | March 1994 | Pages 164-175
Technical Paper | Fusion Reactor | doi.org/10.13182/FST94-A30265
Articles are hosted by Taylor and Francis Online.
The important mechanisms of energy flow in a quasi-isobaric magnetic fusion device are studied. In Part I of this paper, the spatial profiles of plasma parameters that yield acceptable values of Qdt and plasma dimensions are determined. These prof lies are determined by balancing the dominant terms in the differential energy equations, i.e., conduction, brems-Strahlung, and collisional energy exchange, against each other. One class of equilibria was identified for a more detailed study. In Part II, the contributions of inelastic processes, radiation transport, and alpha-particle slowing down to the differential energy balances for electrons and ions are examined. Bremsstrahlung loss is found to be the dominant term for electrons. Inelastic processes involving hydrogen are important for ions in the fusion “core.” Impurity radiation can be important even with a low impurity content. Energy deposition by alpha particles is significant in the high-density edge, while cyclotron radiation transport plays some role in regions with large density gradients.