ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Cheng Zhang*, Francesco Romanelli
Fusion Science and Technology | Volume 25 | Number 2 | March 1994 | Pages 147-163
Technical Paper | Plasma Heating System | doi.org/10.13182/FST94-A30264
Articles are hosted by Taylor and Francis Online.
An analysis of the neutral beam (NB) current drive for the International Thermonuclear Experimental Reactor (ITER) is performed. The NB deposition profile for a model elliptic equilibrium is evaluated for arbitrary density profiles. Multistep ionization is accounted for. The NB current density is calculated by using an approximate solution of the Fokker-Planck equation. A parameter scan is performed by changing electron density, plasma temperature, the plasma effective ionic charge Zeff, beam energy Eb, beam mass number, beam section, and tangency radius of the beam center. The largest values of the current drive figure of merit γNB = INBnR/P are obtained for the largest beam energy. The obtained value of γNB for the ITER reference scenario is γNB = 0.6 for Eb = 1.3 MeV and Zeff = 2.