ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Ikuji Takagi, Kouta Kodama,* Kazuo Shin, Kunio Higashi, Hideki Zushi, Tohru Mizuuchi, Tohru Senjyu, Masahiro Wakatani, Tokuhiro Obiki
Fusion Science and Technology | Volume 25 | Number 2 | March 1994 | Pages 137-146
Technical Paper | First-Wall Technology | doi.org/10.13182/FST94-A30263
Articles are hosted by Taylor and Francis Online.
Two experiments on the plasma-driven permeation (PDP) of deuterium through nickel membranes were conducted. One was an observation of the permeation during the discharge cleaning of Heliotron E, one of the largest helical systems. Significant amounts of deuterium permeated. The deuterium permeation was also observed during a helium discharge, where deuterium recycled between the plasma and chamber walls. Because the permeation was strongly influenced by impurities such as oxygen on the plasma-facing surface of the membrane, the PDP would be useful for a diagnosis of the discharge cleaning. The second experiment was a study on transient behaviors of the permeation when nickel membranes were exposed to a deuterium plasma for short times. The small device with a radio-frequency plasma was used to simulate pulse operations of large plasma devices. The maximum permeation flux at the nonsteady state was found to be nearly proportional to the exposure time of the plasma. Numerical calculations reproduced very well the transient behaviors of the deuterium permeation in the pulse-exposure experiments. Based on the results of the two experiments, it is expected that the deuterium PDP from neutral beam injection-heated plasmas in Heliotron E will be observed.