ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Turgut M. Gür, Martha Schreiber, George Lucier, Joseph A. Ferrante, Jason Chao, Robert A. Huggins§
Fusion Science and Technology | Volume 25 | Number 4 | July 1994 | Pages 487-501
Technical Paper | Electrolytic Device | doi.org/10.13182/FST94-A30256
Articles are hosted by Taylor and Francis Online.
The design and the operational characteristics of a new isoperibolic calorimeter that is developed to study the electrochemical insertion of deuterium into palladium are described. The design is simple and involves inexpensive materials to build. It possesses a number of distinct advantages that makes it suitable for thermal measurements in other electrochemical systems. It is insensitive to the nature and the location of the heat source within the electrochemical cell. The calibration constant is found to be stable with ±0.5% uncertainty over a wide range of input power levels up to 22 W. It also has the capability of operating over a wide temperature range. In principle, the calorimeter can be used up to 600°C, provided that the electrochemical cell design and materials are chosen appropriately. The design also provides flexibility to adjust the sensitivity of the calorimeter according to the needs of the system under study.