ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
T. Honda, T. Uda, K. Maki, T. Okazaki, Y. Seki, I. Aoki
Fusion Science and Technology | Volume 25 | Number 4 | July 1994 | Pages 451-468
Technical Paper | Safety/Environmental Aspect | doi.org/10.13182/FST94-A30252
Articles are hosted by Taylor and Francis Online.
A comprehensive safety analysis code system has been proposed for the quantitative investigation of the safety of nuclear fusion reactors such as the International Thermonuclear Experimental Reactor (ITER). As a first step, the plasma dynamics and the thermal characteristics of the core internal structures have been developed by a one-point model and a time-dependent one-dimensional heat transfer model, respectively. The thermal behavior of ITER during overpower events caused by thermal instability of the plasma has been analyzed. In a truly ignited operation (Q ∼ ∞), the plasma reaches the beta limit in ∼6.5 (3.5) s after insertion of a + 10% fluctuation in fuel density, when the ITER89-L power law (the offset-linear law) is applied. The surface temperature of the divert or tiles rises to ∼1900°C, which may result in damage from erosion and thermal stress. On the other hand, the outboard and inboard structures maintain their integrity during overpower events if the cooling systems function normally. The code system will be integrated step by step to provide overall safety analyses for nuclear fusion reactors.