ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Nancy Ma, John Walker, Tess Moon, Thanh Hua, Basil Picologlou
Fusion Science and Technology | Volume 25 | Number 4 | July 1994 | Pages 398-410
Technical Paper | Blanket Engineering | doi.org/10.13182/FST94-A30246
Articles are hosted by Taylor and Francis Online.
The three-dimensional magnetohydrodynamic (MHD) flow in a pair of finite-length, parallel, equal-area square ducts, connected to single rectangular ducts upstream and downstream is examined. Each duct has a different liner with a thin sheet of metal that is in contact with the coolant and that is electrically insulated from structural walls and from other duct liners, except at the junctions. The objective is to concentrate most of the flow in one of the two parallel ducts by making its metal wall much thinner than that of its neighbor, so that its MHD resistance to flow is smaller. Flow ratios approaching ten are obtained with typical values of the wall conductance ratios, which are proportional to the wall thicknesses. The flow at the entrance is complex, with some flow entering the low-velocity duct and then returning to the entrance, where it swirls around the upstream edge of the common wall to enter the high-velocity duct. The balance between three-dimensional and fully developed pressure drops is investigated as a function of the distance between the entrance and the exit of the parallel ducts.