ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
ANS 2025 Annual Conference details
The American Nuclear Society’s 2025 Annual Conference will take place June 15–18 this year in Chicago at the Downtown Marriott. The conference is an opportunity to take part in one of the largest gatherings of nuclear professionals in the country and engage with leaders from across the nuclear science and technology landscape. In addition to an impressive list of government and industry leaders, ANS is also planning several outstanding hot-topic technical sessions and popular plenary speakers.
Randell L. Mills, William R. Good, Robert M. Shaubach
Fusion Science and Technology | Volume 25 | Number 1 | January 1994 | Pages 103-119
Technical Paper | Nuclear Reaction in Solid | doi.org/10.13182/FST94-A30239
Articles are hosted by Taylor and Francis Online.
Three sets of heat production and “ash” identification data are presented. An exothermic reaction is reported wherein the electrons of hydrogen and deuterium atoms are stimulated to relax to quantized potential energy levels below that of the “ground state” via electrochemical reactants K+ and K+; Pd2+ and Li+; or Pd and O2 of redox energy resonant with the energy hole that stimulates this transition. Calorimetry of pulsed current and continuous electrolysis of aqueous potassium carbonate (K+/K+ electrocatalytic couple) at a nickel cathode were performed. The excess output power of 41 W exceeded by a factor >8 the total input power given by the product of the electrolysis voltage and current. The product of the exothermic reaction is atoms having electrons of energy below the ground state, which are predicted to form molecules. The predicted molecules were identified by their lack of reactivity with oxygen, by separation from molecular deuterium by cryofiltration, and by mass spectroscopic analysis.