ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Randell L. Mills, William R. Good, Robert M. Shaubach
Fusion Science and Technology | Volume 25 | Number 1 | January 1994 | Pages 103-119
Technical Paper | Nuclear Reaction in Solid | doi.org/10.13182/FST94-A30239
Articles are hosted by Taylor and Francis Online.
Three sets of heat production and “ash” identification data are presented. An exothermic reaction is reported wherein the electrons of hydrogen and deuterium atoms are stimulated to relax to quantized potential energy levels below that of the “ground state” via electrochemical reactants K+ and K+; Pd2+ and Li+; or Pd and O2 of redox energy resonant with the energy hole that stimulates this transition. Calorimetry of pulsed current and continuous electrolysis of aqueous potassium carbonate (K+/K+ electrocatalytic couple) at a nickel cathode were performed. The excess output power of 41 W exceeded by a factor >8 the total input power given by the product of the electrolysis voltage and current. The product of the exothermic reaction is atoms having electrons of energy below the ground state, which are predicted to form molecules. The predicted molecules were identified by their lack of reactivity with oxygen, by separation from molecular deuterium by cryofiltration, and by mass spectroscopic analysis.