ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Insoo Jun, Mohamed A. Abdou, Anil Kumar
Fusion Science and Technology | Volume 25 | Number 1 | January 1994 | Pages 51-83
Technical Paper | Blanket Engineering | doi.org/10.13182/FST94-A30236
Articles are hosted by Taylor and Francis Online.
Measured decay rates resulting from neutron irradiation of zirconium and tungsten samples in a typical fusion environment have been compared with the computed values, and the sources of errors in the data and the calculational method have been identified. Comparison of four codes showed large differences that arise mainly from differences in the data libraries provided with these codes. The following reactions were found to be most important in terms of their contribution to the decay photon emission rate: 90Zr(n, 2n)-89m+gZr) 90Zr(n,p)90mY, 90Zr(n,α)87mSr, 91Zr(n,p)91mY, 186W(n,y)187W, 186W(n,p)186Ta, 186W(n,np)(n,d)-185Ta, 184W(n,p)184Ta, 183W(n,p)183Ta, 182W(n,p)-182Ta, and 186W(n, α)183Hf. However, decay data and cross sections for these reactions are not adequate in currently available libraries. An effort was made to improve the decay data by using the values from the most recent Table of Radioactive Isotopes and to improve the cross sections by using a simple curve-fitting procedure. Modified or improved decay data and cross sections were implemented in a representative code, and the computation was performed again. A great improvement in the computed results was observed for both sample cases. This work can easily be extended to other fusion-relevant materials by utilizing the methodology presented here. The improved decay and cross-section data were applied to an International Thermonuclear Experimental Reactor (ITER) blanket using tungsten as a first-wall coating material and Li2ZrO3 as a breeding material. The specific photon yield in each zone was computed, and as much as three orders of magnitude difference in the photon yield in the tungsten zone and ∼10 to 15% difference in the zirconium-containing breeding zone were observed between the results using the improved decay and cross-section data and those using the original data.