ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. W. Moir, R. L. Bieri, X. M. Chen, T. J. Dolan, M. A. Hoffman, P. A. House, R. L. Leber, J. D. Lee, Y. T. Lee, J. C. Liu, G. R. Longhurst, W. R. Meier, P. F. Peterson, R. W. Petzoldt, V. E. Schrock, M. T. Tobin, W. H. Williams
Fusion Science and Technology | Volume 25 | Number 1 | January 1994 | Pages 5-25
Technical Paper | Fusion Reactor | doi.org/10.13182/FST94-A30234
Articles are hosted by Taylor and Francis Online.
Enhanced safety and performance improvements have been made to the liquid-wall HYLIFE reactor, yielding the current HYLIFE-II conceptual design. Liquid lithium has been replaced with a neutronically thick array of flowing molten-salt jets (Li2BeF4 or Flibe), which will not burn, has a low tritium solubility and inventory, and protects the chamber walls, giving a robust design with a 30-yr lifetime. The tritium inventory is 0.5 g in the molten salt and 140 g in the metal of the tube walls, where it is less easily released. The 5-MJ driver is a recirculating induction accelerator estimated to cost $570 million (direct costs). Heavy-ion targets yield 350 MJ, six times per second, to produce 940 MW of electrical power for a cost of 6.5¢/kW·h. Both larger and smaller yields are possible with correspondingly lower and higher pulse rates. When scaled up to 1934 MW(electric), the plant design has a calculated cost of electricity of 4.5¢/kW · h. The design did not take into account potential improved plant availability and lower operations and maintenance costs compared with conventional power plant experience, resulting from the liquid wall protection. Such improvements would directly lower the electricity cost figures. For example, if the availability can be raised from the conservatively assumed 75% to 85% and the annual cost of component replacement, operations, and maintenance can be reduced from 6% to 3% of direct cost, the cost of electricity would drop to 5.0 and 3.9¢/kW·h for 1- and 2-GW(electric) cases.