ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Yuichi Ogawa, Nobuyuki Inoue, Zensho Yoshida, Kunihiko Okano
Fusion Science and Technology | Volume 24 | Number 2 | September 1993 | Pages 188-199
Technical Paper | Plasma Engineering | doi.org/10.13182/FST93-A30225
Articles are hosted by Taylor and Francis Online.
The plasma and machine parameters of a pulsed tokamak reactor with a day-long operation period have been studied, where engineering constraints such as maximum toroidal field strength are preserved at International Thermonuclear Experimental Reactor (ITER) levels so as to realize a fusion reactor with only a short-range extension of currently available technology. To provide the magnetic flux necessary to sustain a plasma current inductively for 1 day or longer, plasmas with a major radius of R > 9.5 m are necessary, and a plasma with an aspect ratio as high as A > 5 should be employed. Typical parameters are as follows: major radius R = 10 m, minor radius a = 1.85 m, plasma elongation κ = 1.8, plasma current Ip = 12.2MA, toroidal field on axis Bt >= 7.56 T, and safety factor at the plasma surface qψ = 3. A plasma volume V ∼ 1200 m3 is comparable with that of ITER, even though the major radius of a day-long operation reactor is relatively large. A very small amount of heating power (∼ 15 MW) with a heating time of only a few tens of seconds is sufficient to achieve the ignition condition. This is well within the capacity of auxiliary heating systems currently used in large tokamak devices. A confinement improvement factor (from L mode) of fL > 1.7 is required to design a reactor with a reasonable machine size and a day-long pulse duration. The operation temperature is chosen to be 〈T〉 = 20 keV with a toroidal beta βt = 2.6% (Troyon factor g = 3), which gives a fusion power Pfus = 2.5 GW even for an alpha-particle dilution nα/ne of 10%. The bootstrap current fraction is 50% or more of the total current, and current profile needed for the beta limit could be achieved with a combination ofohmic current in the plasma center region and bootstrap current in the outer region. If the maximum toroidal field is set much higher, as in proposed recent reactor designs for the Steady-State Tokamak Reactor (SSTR) and ARIES, a more attractive plasma with a larger safety factor can be designed, and the pulse length can be extended remarkably.