ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Om Prakash Joneja, P. Scherrer, J.-P. Schneeberger
Fusion Science and Technology | Volume 24 | Number 2 | September 1993 | Pages 180-187
Technical Paper | Blanket Engineering | doi.org/10.13182/FST93-A30224
Articles are hosted by Taylor and Francis Online.
At the LOTUS facility, an extremely efficient online detector system, based on the detection of the charged particles associated with the 6Li(n, α)t reaction, has been designed, fabricated, and tested. The system offers an interesting possibility for directly measuring the tritium production rate (TPR) at any experimental site. The charged particles emitted in opposite directions can be detected by a double parallel plate ionization chamber (DIC) configuration. The real events are identified by employing a coincidence circuit. The complete fabrication details, testing under different conditions, measurement of TPR, and its comparison with the liquid-scintillation method (LSM) are detailed. The DIC response to thermal neutrons agrees well with the theoretical calculations. Also, the detector system is insensitive to a contact gamma dose rate of 1.3 rem/h. The direct TPR measurements and the salient feature of higher efficiency in comparison with the LSM are demonstrated. The TPR determined by both methods are in excellent agreement.