ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Sergei Zimin
Fusion Science and Technology | Volume 24 | Number 2 | September 1993 | Pages 168-179
Technical Paper | Shielding | doi.org/10.13182/FST93-A30223
Articles are hosted by Taylor and Francis Online.
An extensive analysis of the sensitivity of the fast neutron flux in the superconductor, the dose to the electrical insulator, and the number of displacements per atom in the copper stabilizer to variations of the neutron cross sections for the International Thermonuclear Experimental Reactor (ITER)/OTR inboard region (first wall/blanket/shield/vacuum vessel) was carried out. All of the nuclides with a significant concentration in the ITER/OTR inboard region were investigated, namely, iron, chromium, nickel, lead, oxygen, hydrogen, boron, copper, 6Li, and 7Li. The integrated total sensitivities of iron, lead, hydrogen, and oxygen were compared with the results for the OTR and Next European Torus (NET) sensitivity analyses. The integrated total sensitivity of both the fast neutron flux and the dose to variation of lead cross sections for the ITER/OTR was much higher than that for the OTR, namely, 3.5 and 1.2, respectively. The difference in the integrated total sensitivities of the inboard toroidal field coil responses to a one standard deviation variation of the iron, hydrogen, and oxygen neutron cross sections was <30%. The most important energy regions and the types of neutron cross sections for shield calculations were identified. The uncertainty of the neutron cross sections in the important energy regions needs to be decreased to <10% to decrease the uncertainty of the calculated neutron dose and fast flux behind the ITER/OTR inboard shield to <15 to 30%.