ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Hideo Harada, H. Takahashi, Arnold L. Aronson, Takeshi Kase, Kenji Konashi,†, Nobuyuki Sasao
Fusion Science and Technology | Volume 24 | Number 2 | September 1993 | Pages 161-167
Technical Paper | Nonelectrical Application | doi.org/10.13182/FST93-A30222
Articles are hosted by Taylor and Francis Online.
A system of nuclear transmutation is presented in which fission products and transuranics (TRU) are incinerated using 14-MeV neutrons produced by muoncatalyzed fusion (µCF) and a subcritical core composed of fission products and TRU, The 14-MeV neutrons produced by µCF are used to transmute 90Sr (fission product) by the (n,2n) reaction. The outcoming neutrons from the 90Sr cell transmute TRU through fission reactions and 99Tc through (n, γ) reactions. This fission energy is converted into electric energy to supply 4 GeV-25 mA deuteron beam power, which is used to produce µ− mesons. We also evaluate the production of tritium that is consumed as a fuel for µCF. The feasibility of the system was analyzed by the MCNP Monte Carlo neutron transport code. The results show that this system can be subcritical and can transmute fission products and TRU with an incineration half-life of ∼1 yr and that the deuteron beam energy and tritium fuel required to operate the system can be supplied within the system cycle itself.