ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Brian J. Laundy, Owen N. Jarvis
Fusion Science and Technology | Volume 24 | Number 2 | September 1993 | Pages 150-160
Technical Paper | Experimental Device | doi.org/10.13182/FST93-A30221
Articles are hosted by Taylor and Francis Online.
A simple computer model of the Joint European Torus (JET) tokamak has been constructed, using the neutron transport code McBEND, to assist in the interpretation of point neutron source data used for empirical calibrations of fission chambers placed near the tokamak to measure the total neutron emission from deuterium and deuterium-tritium plasmas, A satisfactory simulation of the experimental data using a 252Cf neutron source is obtained. In particular, the preferential moderation and absorption of 252Cf neutrons, compared with plasma neutrons, resulting from the buildup of equipment around the tokamak in recent years is demonstrated; this differentiation between neutron sources is a consequence of the use of a concrete filler in the spaces between the toroidal field (TF) coils. An unexpected increase in detector response is explained by the substitution of Freon for water as the TF coil coolant. Finally, the McBEND calculations are found to predict correctly the relative responses of both 235U and 238U fission chambers to 2.5- and 14-MeV plasma neutrons.