ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Johann L. Hemmerich
Fusion Science and Technology | Volume 24 | Number 2 | September 1993 | Pages 137-144
Technical Paper | Tritium System | doi.org/10.13182/FST93-A30219
Articles are hosted by Taylor and Francis Online.
The most common basic process of air detritiation, which employs oxidation of tritiated gases in a catalytic recombiner and subsequent collection ofHTO on molecular sieve dryers, can also be used for a large-scale detritiation system for the next-step deuterium-tritium fusion device. Performance, economy, and reliability can be improved by modifying the design of basic elements, i.e., the recombiners and molecular sieve dryers, and by rearranging them in a system permitting multiple process path choices for optimum performance depending on demand. These improvements should result in a system that is (a) free of secondary tritium release by permeation; (b) economical, with <1 kW power required in a ready-to-operate “hot standby” condition; (c) capable of reducing inlet humidity of the order of 10000 ppm (volume) to 0.01 ppm at the outlet by using two adsorber stages in series; and (d) capable of providing the best starting condition for water processing: little or no dilution by H2O from isotopic swamping due to the use of two adsorber stages. The system detritiation factor is defined and discussed, and the overriding importance of high water retention efficiency is demonstrated.