ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Alden E. Park
Fusion Science and Technology | Volume 24 | Number 3 | November 1993 | Pages 319-323
Technical Note | Cold Fusion | doi.org/10.13182/FST93-A30207
Articles are hosted by Taylor and Francis Online.
A speculative mechanism for the creation of 4He using cold fusion is proposed. The nuclear transformation can be made by the fusion of two excited rotating ground states of deuterium into a highly excited rotating ground state of 4He. Under compression and relatively stable conditions, the formation of such a bound, stretched-out pnnp state of 4He would be favored (with respect to Coulomb repulsion) over other nuclear ground states without as much angular momentum. The reaction likely occurs at the surface of palladium. A more descriptive name for this reaction is compressed-rotational-shielded (CRS) fusion. Potential experimental conditions for enhancing the initiation of CRS fusion are discussed.