ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Gennady V. Fedorovich
Fusion Science and Technology | Volume 24 | Number 3 | November 1993 | Pages 288-292
Technical Note | Cold Fusion | doi.org/10.13182/FST93-A30203
Articles are hosted by Taylor and Francis Online.
A proposal for an experiment to investigate a new physical object (called the “E-cell”) is presented. The E-cell can be used as an appropriate “catalyst” for nuclear fusion reactions in solids. The E-cell is a radiation defect of a crystalline lattice of some light metal (6Li, 7Be, 10B) hydride that is formed after a fission (as a result of a thermal neutron capture) of a metal atom nucleus. If the pressure in the crystal is in the megabar range, the following two features of the E-cell are of interest: 1. The average density of free electrons in the central region of the E-cell exceeds 1024 cm−3; this results in a large suppression of the Coulomb barrier between hydrogen nuclei; the value of the screening parameter exceeds ≃109 cm−1. 2. The potential energy of the preliminary compressed crystalline lattice can be transformed into the kinetic energy of the collision of a pair of hydrogen nuclei. This energy can reach some hundreds of electron-volts, and it provides the possibility of an approach between hydrogen nuclei to a distance of ≤10−9 cm. The summary result is the effective catalysis of hydrogen nuclear fusion to a detectable rate. The experimental investigation of the E-cell can lead to the creation of conditions for the effective enhancement of the fusion rate to values that are of practical interest.